h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
H2(z, e1(x)) -> H2(c1(z), d2(z, x))
D2(c1(z), g2(g2(x, y), 0)) -> G2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
D2(z, g2(x, y)) -> D2(z, y)
H2(z, e1(x)) -> D2(z, x)
G2(e1(x), e1(y)) -> G2(x, y)
D2(c1(z), g2(g2(x, y), 0)) -> D2(z, g2(x, y))
D2(z, g2(x, y)) -> G2(e1(x), d2(z, y))
D2(c1(z), g2(g2(x, y), 0)) -> D2(c1(z), g2(x, y))
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
H2(z, e1(x)) -> H2(c1(z), d2(z, x))
D2(c1(z), g2(g2(x, y), 0)) -> G2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
D2(z, g2(x, y)) -> D2(z, y)
H2(z, e1(x)) -> D2(z, x)
G2(e1(x), e1(y)) -> G2(x, y)
D2(c1(z), g2(g2(x, y), 0)) -> D2(z, g2(x, y))
D2(z, g2(x, y)) -> G2(e1(x), d2(z, y))
D2(c1(z), g2(g2(x, y), 0)) -> D2(c1(z), g2(x, y))
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
G2(e1(x), e1(y)) -> G2(x, y)
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(e1(x), e1(y)) -> G2(x, y)
POL(G2(x1, x2)) = 2·x1 + 2·x2
POL(e1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
D2(z, g2(x, y)) -> D2(z, y)
D2(c1(z), g2(g2(x, y), 0)) -> D2(z, g2(x, y))
D2(c1(z), g2(g2(x, y), 0)) -> D2(c1(z), g2(x, y))
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
D2(c1(z), g2(g2(x, y), 0)) -> D2(z, g2(x, y))
Used ordering: Polynomial interpretation [21]:
D2(z, g2(x, y)) -> D2(z, y)
D2(c1(z), g2(g2(x, y), 0)) -> D2(c1(z), g2(x, y))
POL(0) = 0
POL(D2(x1, x2)) = x1
POL(c1(x1)) = 1 + 3·x1
POL(e1(x1)) = 0
POL(g2(x1, x2)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
D2(z, g2(x, y)) -> D2(z, y)
D2(c1(z), g2(g2(x, y), 0)) -> D2(c1(z), g2(x, y))
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
D2(c1(z), g2(g2(x, y), 0)) -> D2(c1(z), g2(x, y))
Used ordering: Polynomial interpretation [21]:
D2(z, g2(x, y)) -> D2(z, y)
POL(0) = 2
POL(D2(x1, x2)) = 2·x2
POL(c1(x1)) = 0
POL(e1(x1)) = 1
POL(g2(x1, x2)) = x1 + x2
g2(e1(x), e1(y)) -> e1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
D2(z, g2(x, y)) -> D2(z, y)
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
D2(z, g2(x, y)) -> D2(z, y)
POL(D2(x1, x2)) = 2·x2
POL(g2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
H2(z, e1(x)) -> H2(c1(z), d2(z, x))
h2(z, e1(x)) -> h2(c1(z), d2(z, x))
d2(z, g2(0, 0)) -> e1(0)
d2(z, g2(x, y)) -> g2(e1(x), d2(z, y))
d2(c1(z), g2(g2(x, y), 0)) -> g2(d2(c1(z), g2(x, y)), d2(z, g2(x, y)))
g2(e1(x), e1(y)) -> e1(g2(x, y))